Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation.

نویسندگان

  • C F Chou
  • O Bakajin
  • S W Turner
  • T A Duke
  • S S Chan
  • E C Cox
  • H G Craighead
  • R H Austin
چکیده

A separation technique employing a microfabricated sieve has been demonstrated by observing the motion of DNA molecules of different size. The sieve consists of a two-dimensional lattice of obstacles whose asymmetric disposition rectifies the Brownian motion of molecules driven through the device, causing them to follow paths that depend on their diffusion coefficient. A nominal 6% resolution by length of DNA molecules in the size range 15-30 kbp may be achieved in a 4-inch (10-cm) silicon wafer. The advantage of this method is that samples can be loaded and sorted continuously, in contrast to the batch mode commonly used in gel electrophoresis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous separation of biomolecules by the laterally asymmetric diffusion array with out-of-plane sample injection.

The laterally asymmetric diffusion array, a biomolecule sorting device, was used to continuously separate a mixture of T2 and T7 coliphage DNA molecules into its constituents. A two-dimensional array of obstacles (in the presence of an average flow v) can be used to rectify the Brownian motion of particles (in this case DNA molecules) so that they diffuse preferentially in one direction, and pe...

متن کامل

Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting.

Hydrodynamic microfluidic platforms have been proven to be useful and versatile for precisely sorting particles/cells based on their physicochemical properties. In this study, we demonstrate that a simple lattice-shaped microfluidic pattern can work as a virtual sieve for size-dependent continuous particle sorting. The lattice is composed of two types of microchannels ("main channels" and "sepa...

متن کامل

Mathematical Modeling of Gas Separation Process with Flat Carbon Membrane

Carbon molecular sieve membranes (CMSMs) have been considered as very promising candidates for gas separation, in terms of separation properties as well as thermal and chemical stability. Due to the numerous advantages and wide applications of carbon membranes, their application for gas separation is of special importance. Because of the importance of carbon membranes and a large number of stud...

متن کامل

Dynamics analysis of microparticles in inertial microfluidics for biomedical applications

Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...

متن کامل

Boundary-layer analysis of waves propagating in an excitable medium: Medium conditions for wave-front-obstacle separation.

In an excitable medium, wave breaks are essential for spiral wave formation. Although wave breaks can result from collisions between a wave and an obstacle, it is only when the resultant wave fragments separate from the obstacle ~wave-front–obstacle separation! that a spiral wave will begin to develop. We explored collisions between a piecewise linear obstacle and an incident wave front while v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 24  شماره 

صفحات  -

تاریخ انتشار 1999